Name and Surname:

Grade/Class: 12/..... Mathematics Teacher:.....

Hudson Park High School

GRADE 12 MATHEMATICS Paper 1

Marks

150

Time :

3 hours

Date

: 3 June 2016

Examiner: SLT

Moderator(s)

SLK

INSTRUCTIONS

- 1. Illegible work, in the opinion of the marker, will earn zero marks.
- 2. Number your answers clearly and accurately, exactly as they appear on the question paper.
- 3. NB Start each QUESTION at the top of a page.
 - Leave 2 lines open between each of your answers.
- 4. NB Fill in the details requested on the front of this Question Paper and hand in your submission in the following manner:
 - Question Paper (on top)
 - Answer Pages (below, in order)

Do not staple the Question Paper and Answer Pages together.

- 5. Employ relevant formulae and show all working out. Answers alone may not be awarded full marks.
- 6. (Non-programmable and non-graphical) Calculators may be used, unless their usage is specifically prohibited.
- 7. Round off answers to 2 decimal places, where necessary, unless instructed otherwise.
- 8. If (Euclidean) Geometric statements are made, reasons must be stated appropriately.

QUESTION 1 [36 marks]

1.1. Solve for x:

1.1.1.
$$x^2 = 5x$$
 3

1.1.2.
$$3x^2 - 4x - 12 = 0$$

1.1.3.
$$10x^{-\frac{2}{3}} + 8x^{-\frac{4}{3}} = 3$$

1.1.4.
$$0 \le -x(6x+5)+4$$

1.1.5.
$$\frac{\sqrt{x}(2-x)}{2^{x}(x-1)} \ge 0$$
 2 (17)

1.2. Given:
$$6x^2 - 3y = 11x + 10$$

 $\frac{1}{3}x - y = \frac{16}{3}$

1.2.1. Solve for
$$x$$
 and y .

1.2.2. Interpret your answer to
$$(1.2.1.)$$
 graphically. $\underline{2}$ (8)

1.3. Simplify fully:
$$\frac{2^{2015}}{2^{2017} - 3.2^{2012}}$$
 (3)

1.4. A quadratic equation was solved and it's roots were found to be:

$$x = \frac{3 \pm \sqrt{21 - 4k}}{5}$$

where $k \in \mathbb{N}_0$. Determine the value(s) of k for which the roots of the quadratic equation will be rational. (2)

1.5. The graph of f has the following equation:

$$y = x + \frac{1}{x}$$

where $x \in \mathbb{R}$ and $x \neq 0$.

1.5.1. Write the given equation in standard form.
$$\underline{1}$$

1.5.2. Now, determine the discriminant (
$$\Delta$$
) of the equation in (1.5.1.).

1.5.3. Hence, determine the range of
$$f$$
. $\underline{3}$ (6)

QUESTION 2 [28 marks]

2.1. The 10th, 11th and 12th terms of an arithmetic sequence are:

$$2x + 3$$
; $4x + 10$; $10x - 3$

- 2.1.1. Calculate the value of x, showing that it will be 5. $\underline{2}$
- 2.1.2. Hence, determine T_{10} and T_{11} .
- 2.1.3. Now, calculate T_{500} . $\underline{4}$ (8)

2.2. Evaluate:
$$\sum_{k=7}^{95} (3-5k)$$
 (5)

2.3. Given:
$$\frac{3}{4} + \frac{1}{2} + \frac{1}{3} + \cdots$$

2.3.1. Calculate
$$n$$
 if $S_{\infty} - S_n = \frac{1024}{59049}$

2.3.2. You are given a tree of height 1,5 m as a gift. You plant it immediately. Each year you monitor it's growth and tabulate your results:

Year	Growth (in metres)
1	0,75
2	0,5
3	0, 3

What is the maximum height the tree will grow to? $\underline{2}$ (9)

2.4. Given:
$$\frac{4}{16}$$
; $\frac{-4}{8}$; $\frac{-18}{4}$; $\frac{-38}{2}$; ...

Determine an expression for the n-th term of the sequence, T_n . (6)

QUESTION 3 [19 marks]

3.1. Given:
$$f(x) = -2^{x-1} + 8$$

3.1.1. Sketch the graph of f, showing all relevant details on your diagram.

4

3.1.2. State the range of f.

1.

3.1.3. Calculate the average gradient of f between x = -1 and x = 1.

<u>3</u>

3.1.4. f is reflected in the x-axis to become g. Determine the equation of g in y-form.

<u>2</u>

3.1.5. If $h(x) = -16.2^{x-1} + 10$, give a detailed description of the tansformation of f to h.

<u>3</u> (13)

3.2. Given:
$$i(x) = \log_{\frac{1}{4}} x$$

3.2.1. Sketch a rough graph of i, showing all relevant details on your diagram.

2

3.2.2. Solve for
$$x : \log_{\frac{1}{4}} x = 3$$

<u>2</u>

3.2.3. Hence, use your graph to solve for
$$x: \log_{\frac{1}{4}} x \ge 3$$

<u>2</u> (6)

QUESTION 4 [10 marks]

4.1 Given:
$$f(x) = -\frac{8}{x+2} + 1$$

4.1.1. Sketch the graph of f, showing all relevant details on your diagram.

5

4.1.2. f is reflected in a certain line to become g, where

$$g(x) = \frac{8}{x+2} + 1$$

State the possible equation(s) of that line.

<u>2</u>

4.1.3. If f is moved 5 units to the left, what will the new equation of f be?

1 (8)

- 4.2. For $h(x) = \frac{5}{x+p} + q$ it is known that :
 - the domain is: $x \in \mathbb{R}, x \neq 4$
 - one of the axes of symmetry is: y = -x + 7

Determine the value of q.

(2)

QUESTION 5 [17 marks]

USE THE ANSWER SHEET PROVIDED

- 5.1. The following details are known about $g(x) = -2x^2 + bx + c$:
 - the axis of symmetry is: x = 3
 - g(-4) = 0

Calculate the values of b and c.

(4)

5.2. A sketch of $f(x) = \frac{1}{4}(x+5)^2 - 1$ is shown below, where A is the turning point of f:

- For f, determine the y-intercept, x-intercepts and coordinates of A and fill them in on the sketch.
 - <u>4</u>
- S.2. 2. 52. On the same set of axes as f, sketch f^{-1} , the inverse of f. The intercepts and turning point of f^{-1} must be clearly labelled.
- <u>3</u>
- 5. 2.3. 53. Determine the equation of f^{-1} , the inverse of f, in y-form.
- <u>4</u>

- 5.2.4. f^{-1} is not a function.
- S.2.4. Sive a reason for this, with reference to f.
- <u>1</u>
- State one way in which the domain of f be restricted so that f^{-1} would be a function.
- <u>2</u> (13)

QUESTION 6 [12 marks]

6.1.	How many full years will it take an investment that is earning 6 % interest per annum compounded monthly, to double in value?	(4)
6.2.	A vehicle depreciates <u>by</u> R 30 000 over a period of 5 years when the rate of depreciation, as calculated on the reducing balance method, is 7 % per annum. Calculate the initial value of the vehicle.	(4)
6.3.	Convert a nominal interest rate of 6 % per annum compounded monthly, to a nominal interest rate per annum compounded half-yearly.	(4)

QUESTION 7 [8 marks]

7.1. When
$$f(x) = -2x^3 + ax^2 + 4$$
 is divided by $(x + 3)$ the remainder is -14 . Calculate the value of a . (3)

7.2. Given:
$$f(x) = 6x^3 - 2x^2 + x + 35$$

7.2.1. Use the factor theorem to show that
$$(3x + 5)$$
 is a factor of f . $\underline{2}$

7.2.2. Hence, determine the other (quadratic) factor of
$$f$$
. $\underline{3}$ (5)

QUESTION 8 [20 marks]

8.1. If
$$f(x) = \frac{3}{x} - 1$$
, determine $f'(x)$ from first principles. (6)

8.2. Determine:

8.2.1.
$$\frac{dy}{dx}$$
, if $y = \frac{x^2 + 5}{4 \cdot \sqrt[3]{x}}$

8.2.2.
$$f'(x)$$
, if $f(x) = x^{\frac{1}{2}} \left(x^{\frac{1}{2}} - x^{-\frac{1}{2}} \right)$

8.2.3.
$$D_x \left[\frac{8x^3 - 27}{2x - 3} \right]$$
 $\underline{2}$ (9)

8.3. The tangent to
$$f(x) = ax^2 + bx + 5$$
 at the point $(-2; 9)$ is perpendicular to the line $7y - 2x + 21 = 0$.

Calculate the values of a and b .

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n$$

$$T_n = a + (n-1)d \qquad S_n = \frac{n}{2} [2a + (n-1)d]$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r - 1} ; r \neq 1 \qquad S_n = \frac{a}{1 - r}; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan(x - a)^2 + (y - b)^2 = r^2$$

$$In \ \Delta ABC: \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$area \ \Delta ABC = \frac{1}{2}ab . \sin C$$

$$\sin(\alpha + \beta) = \sin\alpha . \cos\beta + \cos\alpha . \sin\beta \qquad \sin(\alpha - \beta) = \sin\alpha . \cos\beta - \cos\alpha . \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\overline{x} = \frac{\sum fx}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$\hat{y} = a + bx$$

$$\sin(\alpha - \beta) = \sin\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta$$

 $m = \tan \theta$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\sin 2\alpha = 2\sin \alpha.\cos \alpha$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

Detach this page from your question paper and staple it, in order, with your foolscap answers.

Name and Surname:

ANSWER PAGE FOR <u>QUESTION 5</u>

5.1.

		1
1		
ì		
		1
1		
	İ	
1		
į.		
ì		
1		
	 	
Į.	I	
1		
1		
1	i	
1		
1		
1	I	
ļ		
1		
1		
ł		
I		
1	1	
1	<u> </u>	
L	I	

5.2.

ļ	
	<u> </u>
<u> </u>	
<u> </u>	
1	
	1
	-
	L